

APPLICATION NOTE AN199

Using the SL6609A Direct Conversion Pager Receiver

Supersedes March 1995 version, AN199-1.7

AN199-2.0 July 1998

This application note outlines a basic circuit for the SL6609A Direct Conversion Pager Receiver for use in standard paging applications at 153MHz, 282MHz and 450MHz. Fig. 1 is a block diagram of the SL6609A, showing the pin allocation and the internal structure of the device. Table 1 gives detailed descriptions of these functions.

Fig. 1 SL6609A internal block diagram

Pin	Name	Description	
1	TPX	Channel X test point. Channel X internal amplifier output/gyrator filter input. This pin is used to measure the receiver signal level during receiver set up. It may also be used in conjunction with pin 15 (TPLIMX) to measure the response of the gyrator filters. It can be used to add additional filtering in the channel in the form of an additional external capacitor.	
2	RFIADJ	Current source adjust. Pin 2 allows adjustment of the current source which is designed for use with the external RF amplifier. See CIRCUIT FACILITIES.	
3	LOY	Mixer LO input. The local oscillator signal is applied to pin 3 in phase quadrature to pin 5. For the phase quadrature circuit see RF Amplifier and Local Oscillator Network. The LO input of the mixers require a bias path to V_{CC} 1 (see R5 and R6 on the Applications Circuit, Fig. 2).	
4	GYRI	Gyrator filter adjust. The bandwidth of the on-chip gyrator filter can be adjusted using a resistor from pin 4 to GND. For values see Setup for Optimum Performance.	
5	LOX	Mixer LO input. See pin 3	
6	V _R	Voltage reference , V_R . 1V internal reference voltage. It may be used for the bias of external amplifier and LO Circuits. It is also a reference for pins 1,7,8 and 9.	
7	TPY	Channel Y. Channel Y internal amplifier output/gyrator filter input. This pin is used to measure the received signal level during receiver set up. It may also be used in conjunction with pin 12 (TPLIMY) to measure the response of the gyrator filters. It can be used to add additional filtering in the channel in the form of an additional external capacitor.	

Table 1 Pin descriptions

Cont...

Pin	Name	Description	
8	GTHADJ	Audio AGC level adjust. Level adjustment for the external AGC drive. See Fig. 5. The voltage pin 8 is dictated by an external resistor (R16 in Applications Circuit) and an internal current source driven by the wanted audio (baseband) signal level. With no signal output to the receiver, th output of current source 1 tends to be zero and so the voltage at pin 8 is V _R . This gives the resu that the output of current source 2 (pin 28) tends to 0 μ A. (i.e. the AGC is disabled). With a sign incident on the receiver, current source 1 driving pin 8 is turned on and there is a voltage dro across the external resistor (R16). The value of R16 dictates the voltage drop and hence th sensitivity of the AGC circuit. For a value of R16, see Fig. 2.	
9	TCADJ	Audio AGC time constant. The attack (turn on) and decay (duration) times of the Audio AGC are set by an RC network connected to pin 9. See Fig. 2 for details.	
10	BEC	Battery economy. The battery economy facility allows the device to be powered down by pulling pin 10 to GND. If not required this should be connected to $V_{CC}2$.	
11	BATTFL	Low battery flag output. The battery flag is the output of an on-chip comparator with VR as the reference voltage. When V_{BATT} (pin 20) $< V_R$, Battery Flag output is low. BATTFL is an open collector output.	
12	TPLIMY	Channel Y gyrator filter output. See pin 7. Pin 12 provides a monitor of the gyrator filter output of channel Y to enable the response of the filter to be accurately measured and adjusted using pin 4. For details refer to Setup for Optimum Performance.	
13	V _{CC} 2	V_{cc} 2 supply. This pin requires adequate audio decoupling to GND. If a DC-DC converter is used to generate this voltage care must be taken to prevent power supply noise reducing the sensitivity of the device.	
14	DATAOP	Data output. Open collector data output. This requires a pull-up resistor to a suitable voltage reference e.g. V_{CC}^2 .	
15	TPLIMX	Channel X gyrator filter output. See pin 1. Pin 15 provides a monitor of the gyrator filter output of channel X, to enable the response of the filter to be accurately measured and adjusted using Pin 4. For details refer to Setup for Optimum Performance.	
16	BRF2	Data buffer input. Input to the data limiter. This pin is normally connected directly to Pin 17.	
17	BRF1	Output of the phase detector. For optimum performance a Bit Rate filter can be applied to this pin. This is achieved by connecting a capacitor between Pin 17 and GND. The value of this capacitor is dependent on the data rate. For the value of this capacitor see Setup for Optimum Performance .	
18	DIGGND	Digital ground. This is the ground for the digital circuits in the receiver.	
19	V _{BG}	Bandgap voltage reference (1.2V). This may be used to bias an external RF amplifier. See APPLICATION CIRCUIT REQUIREMENTS for details.	
20	V _{BATT}	Battery flag input. Connect this pin to Pin 21 (V _{CC} 1) if a 1V threshold is required. Alternative thresholds may be determined using an external potential divider. See APPLICATION CIRCUIT REQUIREMENTS for details.	
21	V _{CC} 1	V_{CC} 1 supply. This requires adequate audio and RF decoupling if optimum device sensitivity is to be achieved.	
22	REGCNT	Voltage regulator control output. 1V on-chip voltage regulator output, used to drive a suitable PNP transistor. See Setup for Optimum Performance . For stability purposes a capacitor should be applied between Pin 22 and Pin 23. The regulator is only specified for $V_{CC}1 \ge 1.1V$.	
23	V _{REG}	Voltage regulator sense. This should be connected to the load of the regulator. If the regulator i not required, and no active components are connected to Pin 22 and Pin 23, then Pin 23 should b connected to Vcc2.	
24	MIXB	Mixer RF input B. Input to the device from an external RF amplifier. The signal should be applied differentially between Pin 24 and Pin 26. The differential signal to the mixers may be DC coupled if no DC voltage is applied, otherwise AC coupling should be used.	

Pin	Name	Description			
25	GND	Receiver ground. Ground for receiver RF circuits.			
26	MIXA	ixer RF input A. Differential input from an external RF amplifier. See pin 24.			
27	IRFAMP	Current source output IRF. An on chip current source for use in RF amplifier designs. This allows the current in the RF amplifier to be independent of supply voltages. See APPLICATION CIR-CUIT REQUIREMENTS for details. It is very important to use the current source with the RF amplifier. The current source incorporates an RF signal AGC. This ensures optimum operation of the device for high input signal levels.			
28	IAGCOUT	Audio AGC output current. See Fig. 5. A current source controlled by the Audio signal level the AGC threshold adjust (pin 8). The current source is intended to sink current from an PIN di on the RF input and hence reduce the RF signal incident on the RF amplifier input.			

Table 1 Pin descriptions (continued)

APPLICATION CIRCUIT REQUIREMENTS

The example application circuit is shown in Fig. 2. To achieve optimum performance of the device it is necessary to incorporate a low noise RF amplifier at the front end of the receiver. This is easily biased using the on-chip facilities provided. The receiver also requires a local oscillator input at the wanted channel frequency.

RF Amplifier and Local Oscillator Network

The design of the RF amplifier is simplified by the on-chip current source and the two voltage references V_{BG} and V_{R} .

A suitable circuit is shown in Fig. 3. The current through the load and hence the gain of the amplifier is controlled by the onchip current source IRF. This ensures that the gain of the amplifier is independent of the supply voltage. Also, as V_R and V_{BG} are independent of supply voltage, it ensures that the bias points of the transistors are also stable and independent of supply voltage, with each transistor simply biased via a series resistor to the appropriate voltage reference.

The RF amplifier current source (pin 27) may be adjusted with the use of an external resistor connected between pin 2 and a voltage reference or ground. For details see **RF Current Source Adjustment**. Also, the RF amplifier current source forms part of the RF AGC circuitry, reducing the RF amplifier current if excessive signal is incident on the mixer inputs. It is very important to use the current source in the design of the RF amplifier. This ensures that the SL6609A will operate with high level input signals.

The differential input required by the mixers is applied from the RF amplifier via a suitable transformer (T1). This forms a tuned load with the variable capacitor (VC1). This load is tuned to the operating frequency of the device. The normal operating gain of the RF amplifier is also controlled by the load resistor R13 in parallel with the transformer.

The input to the amplifier is an LC network (C26, L1 and C27) designed for optimum noise figure of the RF amplifier in order to give best overall device sensitivity.

For optimum sensitivity, adjacent channel and third order intermodulation performance refer to **Setup for Optimum Performance** for the gain distribution requirements of the receiver chain.

The local oscillator signal is applied to the device in phase quadrature. This can be achieved with the use of two RC networks operating at their $-3dB/45^{\circ}$ transfer characteristic at the local oscillator frequency, giving a full 90° phase differential between the LO ports of the device (see Fig. 4). Each LO port also requires an equal level of drive from the oscillator. In this application circuit the local oscillator is supplied by a signal generator with a source impedance of 50 Ω hence the total RC network (including mixer bias) is designed to have this input impedance.

Note: All voltage and current sources used for bias of the RF amplifier and receiver mixers should be decoupled at RF and audio frequencies using suitable capacitors. RF decoupling should be done as close as possible to the RF circuit.

RF Amplifier to Mixer Transformerless Matching

An LC coupling network can be used to replace the transformer T1 in the applications circuit, Fig. 2. This couples the RF amplifier output to the SL6609A mixer inputs MIXA (pin 26) and MIXB (pin 24). The circuit is shown in Fig. 10.

Regulator Requirements

The on-chip regulator must be used in conjunction with a suitable PNP transistor to achieve reliable regulation. As the transistor forms part of the regulator feedback loop, the transistor should exhibit the following characteristics:

$$H_{FE} \ge 100$$
 for $V_{CE} \ge 0.1$ V

A suitable transistor (TR1) is specified in Fig. 2 and Table 2.

RF and Audio Decoupling Requirements

All voltages and references should be adequately decoupled at audio (baseband) frequencies. Also, where a voltage reference or current source is used to bias the RF or LO circuits it is necessary to apply RF decoupling to the supply at the point of connection.

Open Collector Outputs

The Data Output and the Battery Flag output are open collector and require a pull up resistor to a suitable voltage reference. Care must be taken to ensure that the pull up resistor is adequate to supply sufficient current to the load.

CIRCUIT FACILITIES Audio AGC Circuit

Fig. 5 shows the internal structure associated with the Audio AGC facility. It consists of a current sink which is controlled by the audio (baseband) signal amplitude. It has three parameters that may be controlled by the user; the attack (turn on) time, decay (duration) time and threshold level.

Attack time

The attack time is simply determined by the value of the external capacitor connected to pin 9 (TCADJ). The external capacitor is in series with an internal 100k Ω resistor and the time constant of this circuit dictates the attack time of he AGC i.e. $T_{ATTACK} \approx 100k \times C_{TC}$ (C8)

Decay time

The decay time is determined by the external resistor R9 (R_{DECAY}) connected in parallel to the capacitor C8. The decay time is simply $T_{DECAY} = R9 \times C8$.

Fig. 2 Basic SL6609A application circuit (282MHz receiver), showing RF amplifier with external injected LO (no audio AGC)

Resistors		Сар	acitors	Capaci	tors (cont.)		Inductors
R1 R2 R3	O/C O/C 100Ω	C1 C2 C3	1nF 5⋅6pF ⁽⁴⁾ 1nF	C19 C20 C21	Not used 1nF 1nF	L1 T1	68nH ^{(4) (6)} 30nH 1:1, Coilcraft M1686-A
R4 R5	100kΩ 100Ω	C4 C5	1nF 5∙6pF ⁽⁴⁾	C22 C23	Not used Not used	TR1	Zetex FMMT58
R6 R7	100Ω 100Ω	C6 C7	2∙2µF 1nF	C24 C25	1nF 1nF	TR2 TR3	Toshiba 2SC5065 Not used
R8 R9	O/C 220kΩ	C8 C9	100nF 2nF ⁽⁵⁾	C26 C27	6-8pF ^{(4) (6)} O/C ^{(4) (6)}	TR4 TR5	Philips BFT25A ⁽²⁾ Toshiba 2SC5065
R10 R11	1MΩ 100kΩ ⁽¹⁾	C10 C11	2∙2µF 100nF	C28 C29	Not used 100pF		
R12 R13	330Ω ⁽²⁾ Note ⁽³⁾	C12 C13	1nF 1nF	C30 C31	2·2μF 2·2μF		
R14 R15	4·7kΩ 4·7kΩ	C14 C15	Not used 1nF	C34 VC1	2∙2pF 1-10pF		
R16 R17 R18	33kΩ Not used 12kΩ	C16 C17 C18	1nF 2⋅2μF 1nF				

Table 2 Component list for 282MHz characterisation board (Fig. 2)

NOTES

- 1. The value of R11 is dependent on the data output load. R11 should allow sufficient current to drive the data output load.
- R12 and TR4 form a dummy load for the regulator. Permitted load currents for the regulator are from 250μA to 3mA.
- 3. The value of R13 is determined by the set up procedure. See Setup For Optimum Performance.
- 4. The values of these components are dependent on the operating frequency.
- 5. The value of C9 is determined by the output data rate. Use 2nF for 512bps, 1nF for 1200bps and 470pF for 2400bps.
- 6. L1 and C26 form the low noise matching network for the RF amplifier. The values given are for the RF amplifier specified in Fig. 2 with no audio AGC connected. If the audio AGC circuit is connected, the values will require a small change to achieve a good match.
- 7. Values for R16, R8, C8 and R18 are included so that the open loop action of the AGC circuit can be observed. If this is not required, it can be disabled as described in the section **Disabling the audio AGC** circuits.

Threshold level

When a large audio (baseband) signal is incident on the input of the AGC circuit (Fig. 5), the variable current source is turned on. This causes a voltage drop across R16. The voltage potential between V_R and the voltage on pin 8 causes a current to flow from pin 9. This charges C8 through the 100k Ω internal resistor. As the voltage across the capacitor increases, current source 2 is turned on and this sinks current from pin 28.

The current sink on pin 28 can be used to drive the external AGC circuit by causing a PIN diode to conduct, reducing the signal to the RF amplifier.

The relationship between the incident audio signal and current source 1 is shown in Fig. 8. This can be used in conjunction with the value of R16 to set the voltage at pin 8 for any particular signal level.

The relationship between the voltage at pin 8 and the output of current source 2 is given in Fig. 9.

Using both figures, the value of R16 can be selected to give the required output current at pin 28 for any particular input signal level. Note, however, that the maximum audio signal and hence the audio AGC current (pin 28) is limited in practice by a typical receiver gain distribution to approximately 45μ A.

Disabling the audio AGC circuits

The audio AGC may be simply disabled by connecting pin 8 (GTHADJ) to V_R. Alternatively the audio AGC may be disabled by connecting pin 28 (IAGCOUT) to V_{CC}2 and

connecting pin 9 (TCADJ) directly to V_R (pin 6). This would then allow the use of the voltage drop across R16, when connected to pin 8, to be used as an RSSI (Received Signal Strength Indicator).

RF Current Source Adjustment

With pin 2 open circuit and with pin 27 connected to a potential of 0.2V (i.e. the emitter of a transistor with the base voltage $V_B = 1V$ (i.e. V_R)), the current is nominally set to give IRF= 500 μ A.

The current source may be adjusted by connecting pin 2 via a suitable resistor to a voltage reference or ground.

The value of the resistor is determined by the required increase or decrease in IRF from the nominal 500μ A. (i.e. pin 2 open circuit). The nominal voltage of pin 2 is 0.7V. To decrease IRF, connect pin 2 to ground using a resistor R, where

$$R = \frac{V - 0.7V}{(500\mu A - I_{REQ})/5}$$

I_{REQ} = required IRF

To increase IRF, connect pin 2 to a voltage reference V (e.g. $V_{BG})$ using a resistor R, where

$$\mathsf{R} = \frac{0.7\mathsf{V}}{(\mathsf{I}_{\mathsf{REQ}} - 500\mu\mathsf{A})/5}$$

AN199

NOTES

- 1. V_{BG} should not be used to sink current.
- 2. The on-chip voltage reference V_{R} should not be used as a reference for pin 2 as it is not capable of sourcing the required current.

On-Chip Voltage References

The on-chip voltage reference V_{BG} (1·2V) may be used to bias an external RF amplifier and as a reference for the on-chip RFAGC (see pin 2). V_{BG} can source a maximum current as specified in the device data sheet. V_{BG} should not be used to sink current.

The on-chip voltage references V_R (1.0V) may be used to bias an external RF amplifier and as a reference for pins 1,7,8 and 9. V_R can source or sink a maximum current as specified in the SL6609A data sheet.

Battery Flag Input

The battery flag threshold may be simply increased by using a suitable potential divider so that at the required battery threshold voltage, the voltage at pin 20 (V_{BATT}) is 1V.

Setup for Optimum Performance

To obtain optimum receiver sensitivity it is necessary to have a Low Noise RF Amplifier at the front end of the receiver (see **RF Amplifier and Local Oscillator Network**). However, to achieve optimum third order intermodulation rejection it is essential to ensure that the amplifier gain is not greater than the value necessary to achieve good sensitivity. Similarly, to achieve optimum adjacent channel rejection it is necessary to limit the internal gain of the device to that required to obtain sensitivity. Increasing the internal or the RF Amplifier gain beyond these points will degrade the receiver performance.

The procedure outlined here represents a method of obtaining optimum performance under the following operating conditions:

Frequency of Operation Deviation Frequency Local Oscillator Input Power	282MHz 4kHz −15dBm (50Ω source
	impedance, see Fig. 4)
Power Supply V _{CC} 1	1.3V
Power Supply V _{CC} 2	2.7V
Nominal Gyrator pin 4	100kΩ
R1	Open Circuit
R8	Open Circuit
C1-C7	1nF

If the proposed frequency of operation is different to that stated above, the signal levels stated should be used as a guide to obtaining the optimum gain distribution within the receiver and RF amplifier.

Note: The following set up procedure was undertaken using the RF Amplifier specified in Fig. 2 and should only be used as guidance if alternative RF amplifiers are proposed.

Having obtained the component values for optimum performance for a specified RF amplifier, circuit layout, and operating conditions then, provided the RF amplifier design is not device dependent, it should not be necessary to undertake the set up procedure for each individual circuit.

The local oscillator drive level and receiver gain used can be optimised if required by the user to trade off sensitivity with the receiver interferer performance (i.e. IP3). The receiver gain level specified below is considered adequate to achieve a good balance between sensitivity and receiver interferer performance.

Sensitivity can be increased, to the detriment of receiver interferer performance, by increasing the LNA gain. Fig. 11 and Fig. 12 show typical trends.

Increasing the local oscillator drive level, while reducing the LNA gain to keep the same gain to the receiver test points (TPX and TPY), can be used to increase the receiver interferer performance whilst maintaining a near constant sensitivity level. This is typically true for local oscillator signals in the range 10mVrms to 50mVrms as measured at the receiver local oscillator inputs pins LOX and LOY.

Set up procedure

If the Audio AGC function of the SL6609A is being used in a particular application it must be disabled before undertaking the following steps. To disable the audio AGC function connect GTHADJ directly to V_R , leaving all existing circuitry connected to GTHADJ and V_R unaltered.

- (a) Apply a signal with a frequency of f_{LO} +4kHz, -73dBm, with no modulation on, to the input of the RF amplifier.
- (b) Monitor test point TPX (pin 1) with an oscilloscope. Determine that the signal is at a frequency of 4kHz. Adjust the LO or RF frequency to achieve this. Adjust VC1 on the RF amplifier load until the 4kHz signal level is maximum. This should be >200mV p-p. Note: If the level of the signal is above 260mV p-p the signal will not be sinusoidal due to the saturation of the receiver.
- (c) Use the parallel load resistor (R13) on the RF amplifier to reduce the gain of the RF amplifier to obtain a level of 160mV 10mV p-p at TPX. Ensure that the signal at TPY (pin 7) is also at a level within 10mV of that at TPX (pin 1). Typically, R13 will be:

$$1.2k\Omega$$
 for $153MHz$ $1.8k\Omega$ for $282MHz$ $3.9k\Omega$ for $470MHz$

(d) Connect a capacitor between pin 16 and GND in accordance with Table 3.

Data rate (bps)	Capacitor required	
512	2nF	
1200	1nF	
2400	470pF	

Table 3

Fine adjustment of the gyrator filter

Due to the tolerance of the manufacturing process the gyrator response may vary by 15% for a given value of resistor connected between pin 4 and GND. For accurate alignment the filter will require adjustment. This is simply achieved by undertaking the following procedure: Note: For the following levels to apply the procedure below should follow Setup for Optimum Performance.

- (a) Set the input RF frequency to f_{LO} +4kHz, no modulation.
- (b) Monitor the signal at the test point TPX (pin 1). Check that the signal frequency is 4kHz. Adjust the LO or RF frequency to obtain this. Adjust the RF signal input until a level of 4mV p-p is measured.
- (c) Monitor the test point TPLIMX (pin 15) and note the peak to peak signal level; this should be approximately 170mV p-p but not limiting.
- (d) Adjust the RF signal generator frequency until the signal level drops to 70.8% (-3dB) of the level noted in step (c).
- (e) Note the frequency of the RF signal generator. The difference between the LO frequency and the RF input frequency represents the −3dB response of the filter.

Using a 100k Ω resistor to set the gyrator filters will give a nominal -3dB cut of 7.5kHz. Changing this resistor value causes a linear change in the frequency of the filter cutoff. For example, if a 100k Ω resistor results in a filter -3dB cut off equal to 7.5kHz then a 136k Ω resistor will give a 5.5kHz -3dB cutoff.

Fig. 3 RF amplifier

Component	Value
R13	Note ⁽¹⁾
R14	4·7kΩ
R15	4·7kΩ
R16	33kΩ
R22	47kΩ
C13	1nF
C15	1nF
C16	1nF
C17	1nF
C20	1nF ⁽²⁾
C21	1nF ⁽²⁾
C24	1nF
C25	1nF
L2	820nH
D1	MA862 (Panasonic)

Table 4a RF amplifier component values (non-frequency dependent) NOTES

- 1. The value of R13 is determined by the setup procedure. See **Setup For Optimum Performance.**
- 2. C20 and C21 are purely for demonstration purposes. Pin 24 and pin 26 may be DC coupled provided that no DC voltage is applied to the mixer inputs.

Component	153MHz	280MHz	450MHz
C26	Not used	6-8pF	Not used
C27	Not used	Not used	Not used
C34	3-3pF	2·2pF	1.5pF
L1	150nH	68nH	39nH
T1	100nH Coilcraft N2261-A	30nH Coilcraft M1686-A	16nH Coilcraft Q4123-A
VC1	1-10pF	1-10pF	1-3pF
TR4, TR5	Toshiba 2SC5065	Toshiba 2SC5065	Philips BFT25A

Table 4b RF amplifier component values (frequency dependent). See also LO drive network, Fig. 4

Fig. 4 Local oscillator drive network

Component	153MHz	280MHz	450MHz
C2 C5	10pF 10pF	5∙6pF 5∙6pF	3∙3pF 3∙9pF
C3,C4,C18 R3,R5,R6,R7	1nF, all frequencies 100Ω, all frequencies		

Table 5 LO drive network component values for 50Ω input impedance (external LO injection)

Component	153MHz	280MHz	450MHz	
C2	10pF	5∙6pF	3∙3pF	
C5	10pF	5.6pF	3.9pF	
R3	100Ω	100Ω	100Ω	
R7	100Ω	100Ω	100Ω	
C3	Set by load allowable on crystal osc. (4-7pF ty			
R5,R6	1kΩ, all frequencies			
C4,C18	1nF, all free	quencies		

Table 6 LO drive network component values for high input impedance (crystal oscillator input)

Fig. 5 AGC schematic

Resistors		Capacitors		Miscellaneous		
R9 R15 R16 R17 R22	220kΩ 4·7kΩ 33kΩ ⁽¹⁾ 2kΩ 47kΩ	C8 C15 C16 C22 C26 C30	100nF ⁽¹⁾ 1nF ⁽²⁾ 1nF 1nF 4·7pF ⁽²⁾ 1nF	L1 L2 D1	47nH ⁽²⁾ 820nH MA862 (Panasonic)	

Table 7 AGC component values (282MHz RF amplifier)

NOTES

- 1. R16 sets the gain (sensitivity) of the audio AGC. If R16 is increased then the the audio AGC will become active for a lower wanted signal level. Increasing R16 can cause the audio AGC loop to become unstable. C8 should be increased to increase the turn on/off time to prevent oscillation occuring.
- 2. L1, C15 and C26 are part of the RF amplifier (see Fig. 3).

AN199

AGC Response

Fig. 6 shows a typical AGC response with wanted and unwanted rejection level. If the AGC is required to become active earlier, it is possible to use the circuit shown in Fig. 7 to replace R16. However, it should be noted that the AGC has a fixed dynamic range.

Fig. 9 Audio output current at pin 28 v. DC voltage at pin 8 (GTHADJ)

Fig. 10 RF amplifier with transformerless mixer matching circuit

Re	sistors	Cap	pacitors
R2 R13 R14	Note ⁽¹⁾ 4·7kΩ 4·7kΩ	C13 C15 C16 C24	1nF 1nF 1nF 1nF

Table 8a Component values for Fig. 10 (non-frequency dependent)

NOTES

1. The value of R2 is determined by the setup procedure. See **Setup For Optimum Performance.**

Component	153MHz	280MHz	450MHz
C20	1nF	1nF	1nF
C21	2·7pF	3∙3pF	1pF
C26	Not used	6-8pF	Not used
C27	Not used	Not used	Not used
C34	3·3pF	2·2pF	1.5pF
L1	150nH	68nH	39nH
L3	330nH	100nH	39nH
L6	150nH	83nH	47nH
VC1	1-10pF	1-5pF	Not used
TR4, TR5	Toshiba 2SC5065	Toshiba 2SC5065	Philips BFT25A

Table 8b Component values for Fig. 10 (frequency dependent).

Fig. 11 Sensitivity, IP3 v. receiver gain

Fig. 12 Sensitivity, adjacent channel v. receiver gain

AN199

SEMICONDUCTOR

CUSTOMER SERVICE CENTRES

- FRANCE & BENELUX Les Ulis Cedex
- Tel: (1) 69 18 90 00 Fax: (1) 64 46 06 07
- GERMANY Munich Tel: (089) 419508-20 Fax: (089) 419508-55
- ITALY Milan Tel: (02) 6607151 Fax: (02) 66040993
- JAPAN Tokyo Tel: (03) 5276-5501 Fax: (03) 5276-5510 •
- KOREA Seoul Tel: (2) 5668141 Fax: (2) 5697933 ٠
- .
- NORTH AMERICA Scotts Valley, USA Tel: (408) 438 2900 Fax: (408) 438 5576/6231

Internet: http://www.mitelsemi.com

- SOUTH EAST ASIA Singapore • Tel: (65) 333 6193 Fax: (65) 333 6192
- SWEDEN Stockholm Tel: 46 8 702 97 70 Fax: 46 8 640 47 36
- TAIWAN, ROC Taipei Tel: 886 2 25461260 Fax: 886 2 27190260
- UK, EIRE, DENMARK, FINLAND & NORWAY Swindon Tel: (01793) 726666 Fax : (01793) 518582

These are supported by Agents and Distibutors in major countries worldwide.

© Mitel 1998 Publication No. AN199 Issue 2.0 July 1998 TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any to ensure that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners